Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins.

Identifieur interne : 000452 ( Main/Exploration ); précédent : 000451; suivant : 000453

Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins.

Auteurs : Sonia P. Gutiérrez [Canada] ; Reza Saberianfar ; Susanne E. Kohalmi ; Rima Menassa

Source :

RBID : pubmed:23663656

Descripteurs français

English descriptors

Abstract

BACKGROUND

Plants are recognized as an efficient and inexpensive system to produce valuable recombinant proteins. Two different strategies have been commonly used for the expression of recombinant proteins in plants: transient expression mediated by Agrobacterium; or stable transformation of the plant genome. However, the use of plants as bioreactors still faces two main limitations: low accumulation levels of some recombinant proteins and lack of efficient purification methods. Elastin-like polypeptide (ELP), hydrophobin I (HFBI) and Zera® are three fusion partners found to increase the accumulation levels of recombinant proteins and induce the formation of protein bodies (PBs) in leaves when targeted to the endoplasmic reticulum (ER) in transient expression assays. In this study the effects of ELP and HFBI fusion tags on recombinant protein accumulation levels and PB formation was examined in stable transgenic Nicotiana tabacum.

RESULTS

The accumulation of recombinant protein and PB formation was evaluated in two cultivars of Nicotiana tabacum transformed with green fluorescent protein (GFP) fused to ELP or HFBI, both targeted and retrieved to the ER. The ELP and HFBI tags increased the accumulation of the recombinant protein and induced the formation of PBs in leaves of stable transgenic plants from both cultivars. Furthermore, these tags induced the formation of PBs in a concentration-dependent manner, where a specific level of recombinant protein accumulation was required for PBs to appear. Moreover, agro-infiltration of plants accumulating low levels of recombinant protein with p19, a suppressor of post-transcriptional gene silencing (PTGS), increased accumulation levels in four independent transgenic lines, suggesting that PTGS might have caused the low accumulation levels in these plants.

CONCLUSION

The use of ELP and HFBI tags as fusion partners in stable transgenic plants of tobacco is feasible and promising. In a constitutive environment, these tags increase the accumulation levels of the recombinant protein and induce the formation of PBs regardless of the cultivar used. However, a specific level of recombinant protein accumulation needs to be reached for PBs to form.


DOI: 10.1186/1472-6750-13-40
PubMed: 23663656
PubMed Central: PMC3659085


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins.</title>
<author>
<name sortKey="Gutierrez, Sonia P" sort="Gutierrez, Sonia P" uniqKey="Gutierrez S" first="Sonia P" last="Gutiérrez">Sonia P. Gutiérrez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Western Ontario, London, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, University of Western Ontario, London, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saberianfar, Reza" sort="Saberianfar, Reza" uniqKey="Saberianfar R" first="Reza" last="Saberianfar">Reza Saberianfar</name>
</author>
<author>
<name sortKey="Kohalmi, Susanne E" sort="Kohalmi, Susanne E" uniqKey="Kohalmi S" first="Susanne E" last="Kohalmi">Susanne E. Kohalmi</name>
</author>
<author>
<name sortKey="Menassa, Rima" sort="Menassa, Rima" uniqKey="Menassa R" first="Rima" last="Menassa">Rima Menassa</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23663656</idno>
<idno type="pmid">23663656</idno>
<idno type="doi">10.1186/1472-6750-13-40</idno>
<idno type="pmc">PMC3659085</idno>
<idno type="wicri:Area/Main/Corpus">000458</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000458</idno>
<idno type="wicri:Area/Main/Curation">000458</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000458</idno>
<idno type="wicri:Area/Main/Exploration">000458</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins.</title>
<author>
<name sortKey="Gutierrez, Sonia P" sort="Gutierrez, Sonia P" uniqKey="Gutierrez S" first="Sonia P" last="Gutiérrez">Sonia P. Gutiérrez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Western Ontario, London, ON, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biology, University of Western Ontario, London, ON</wicri:regionArea>
<wicri:noRegion>ON</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saberianfar, Reza" sort="Saberianfar, Reza" uniqKey="Saberianfar R" first="Reza" last="Saberianfar">Reza Saberianfar</name>
</author>
<author>
<name sortKey="Kohalmi, Susanne E" sort="Kohalmi, Susanne E" uniqKey="Kohalmi S" first="Susanne E" last="Kohalmi">Susanne E. Kohalmi</name>
</author>
<author>
<name sortKey="Menassa, Rima" sort="Menassa, Rima" uniqKey="Menassa R" first="Rima" last="Menassa">Rima Menassa</name>
</author>
</analytic>
<series>
<title level="j">BMC biotechnology</title>
<idno type="eISSN">1472-6750</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Elastin (biosynthesis)</term>
<term>Elastin (genetics)</term>
<term>Elastin (metabolism)</term>
<term>Endoplasmic Reticulum (chemistry)</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Fungal Proteins (biosynthesis)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Green Fluorescent Proteins (analysis)</term>
<term>Green Fluorescent Proteins (biosynthesis)</term>
<term>Green Fluorescent Proteins (genetics)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Protein Engineering (MeSH)</term>
<term>RNA Interference (MeSH)</term>
<term>Recombinant Fusion Proteins (analysis)</term>
<term>Recombinant Fusion Proteins (biosynthesis)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Ingénierie des protéines (MeSH)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Protéines de fusion recombinantes (analyse)</term>
<term>Protéines de fusion recombinantes (biosynthèse)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Protéines fongiques (biosynthèse)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Protéines à fluorescence verte (analyse)</term>
<term>Protéines à fluorescence verte (biosynthèse)</term>
<term>Protéines à fluorescence verte (génétique)</term>
<term>Protéines à fluorescence verte (métabolisme)</term>
<term>Réticulum endoplasmique (composition chimique)</term>
<term>Réticulum endoplasmique (métabolisme)</term>
<term>Tabac (génétique)</term>
<term>Tabac (métabolisme)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
<term>Élastine (biosynthèse)</term>
<term>Élastine (génétique)</term>
<term>Élastine (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Green Fluorescent Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Elastin</term>
<term>Fungal Proteins</term>
<term>Green Fluorescent Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Elastin</term>
<term>Fungal Proteins</term>
<term>Green Fluorescent Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Elastin</term>
<term>Fungal Proteins</term>
<term>Green Fluorescent Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Protéines de fusion recombinantes</term>
<term>Protéines à fluorescence verte</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Protéines de fusion recombinantes</term>
<term>Protéines fongiques</term>
<term>Protéines à fluorescence verte</term>
<term>Élastine</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Endoplasmic Reticulum</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Réticulum endoplasmique</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de fusion recombinantes</term>
<term>Protéines fongiques</term>
<term>Protéines à fluorescence verte</term>
<term>Tabac</term>
<term>Végétaux génétiquement modifiés</term>
<term>Élastine</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endoplasmic Reticulum</term>
<term>Plant Leaves</term>
<term>Plants, Genetically Modified</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines fongiques</term>
<term>Protéines à fluorescence verte</term>
<term>Réticulum endoplasmique</term>
<term>Tabac</term>
<term>Végétaux génétiquement modifiés</term>
<term>Élastine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Protein Engineering</term>
<term>RNA Interference</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Ingénierie des protéines</term>
<term>Interférence par ARN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Plants are recognized as an efficient and inexpensive system to produce valuable recombinant proteins. Two different strategies have been commonly used for the expression of recombinant proteins in plants: transient expression mediated by Agrobacterium; or stable transformation of the plant genome. However, the use of plants as bioreactors still faces two main limitations: low accumulation levels of some recombinant proteins and lack of efficient purification methods. Elastin-like polypeptide (ELP), hydrophobin I (HFBI) and Zera® are three fusion partners found to increase the accumulation levels of recombinant proteins and induce the formation of protein bodies (PBs) in leaves when targeted to the endoplasmic reticulum (ER) in transient expression assays. In this study the effects of ELP and HFBI fusion tags on recombinant protein accumulation levels and PB formation was examined in stable transgenic Nicotiana tabacum.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The accumulation of recombinant protein and PB formation was evaluated in two cultivars of Nicotiana tabacum transformed with green fluorescent protein (GFP) fused to ELP or HFBI, both targeted and retrieved to the ER. The ELP and HFBI tags increased the accumulation of the recombinant protein and induced the formation of PBs in leaves of stable transgenic plants from both cultivars. Furthermore, these tags induced the formation of PBs in a concentration-dependent manner, where a specific level of recombinant protein accumulation was required for PBs to appear. Moreover, agro-infiltration of plants accumulating low levels of recombinant protein with p19, a suppressor of post-transcriptional gene silencing (PTGS), increased accumulation levels in four independent transgenic lines, suggesting that PTGS might have caused the low accumulation levels in these plants.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The use of ELP and HFBI tags as fusion partners in stable transgenic plants of tobacco is feasible and promising. In a constitutive environment, these tags increase the accumulation levels of the recombinant protein and induce the formation of PBs regardless of the cultivar used. However, a specific level of recombinant protein accumulation needs to be reached for PBs to form.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23663656</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>03</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1472-6750</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2013</Year>
<Month>May</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>BMC biotechnology</Title>
<ISOAbbreviation>BMC Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins.</ArticleTitle>
<Pagination>
<MedlinePgn>40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1472-6750-13-40</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Plants are recognized as an efficient and inexpensive system to produce valuable recombinant proteins. Two different strategies have been commonly used for the expression of recombinant proteins in plants: transient expression mediated by Agrobacterium; or stable transformation of the plant genome. However, the use of plants as bioreactors still faces two main limitations: low accumulation levels of some recombinant proteins and lack of efficient purification methods. Elastin-like polypeptide (ELP), hydrophobin I (HFBI) and Zera® are three fusion partners found to increase the accumulation levels of recombinant proteins and induce the formation of protein bodies (PBs) in leaves when targeted to the endoplasmic reticulum (ER) in transient expression assays. In this study the effects of ELP and HFBI fusion tags on recombinant protein accumulation levels and PB formation was examined in stable transgenic Nicotiana tabacum.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The accumulation of recombinant protein and PB formation was evaluated in two cultivars of Nicotiana tabacum transformed with green fluorescent protein (GFP) fused to ELP or HFBI, both targeted and retrieved to the ER. The ELP and HFBI tags increased the accumulation of the recombinant protein and induced the formation of PBs in leaves of stable transgenic plants from both cultivars. Furthermore, these tags induced the formation of PBs in a concentration-dependent manner, where a specific level of recombinant protein accumulation was required for PBs to appear. Moreover, agro-infiltration of plants accumulating low levels of recombinant protein with p19, a suppressor of post-transcriptional gene silencing (PTGS), increased accumulation levels in four independent transgenic lines, suggesting that PTGS might have caused the low accumulation levels in these plants.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The use of ELP and HFBI tags as fusion partners in stable transgenic plants of tobacco is feasible and promising. In a constitutive environment, these tags increase the accumulation levels of the recombinant protein and induce the formation of PBs regardless of the cultivar used. However, a specific level of recombinant protein accumulation needs to be reached for PBs to form.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gutiérrez</LastName>
<ForeName>Sonia P</ForeName>
<Initials>SP</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Western Ontario, London, ON, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Saberianfar</LastName>
<ForeName>Reza</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kohalmi</LastName>
<ForeName>Susanne E</ForeName>
<Initials>SE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Menassa</LastName>
<ForeName>Rima</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Biotechnol</MedlineTA>
<NlmUniqueID>101088663</NlmUniqueID>
<ISSNLinking>1472-6750</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-58-3</RegistryNumber>
<NameOfSubstance UI="D004549">Elastin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004549" MajorTopicYN="N">Elastin</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015202" MajorTopicYN="N">Protein Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>02</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23663656</ArticleId>
<ArticleId IdType="pii">1472-6750-13-40</ArticleId>
<ArticleId IdType="doi">10.1186/1472-6750-13-40</ArticleId>
<ArticleId IdType="pmc">PMC3659085</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Biotechnol. 2009;9:96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19930574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2007 Aug 31;131(2):97-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17659801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2009;7:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19175916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2006 May;22(5):268-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16567016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1996 Jan 15;235(1-2):248-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8631337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Sep 21;43(37):11873-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15362873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2010 Jun;8(5):588-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20500681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2005 May;88(5):3434-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Jun 5;236(4806):1299-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17770331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2008 May;59(1):18-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18267368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3447-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15502013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Sep 18;1469(2):79-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10998570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2012 Dec;10(9):1118-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22984968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2011 May;9(4):434-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21040385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2001 Jul;265(5):763-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11523793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(5):949-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2005 Mar;3(2):259-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17173625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2011 Jan;24(1):91-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20977306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 May;77(10):6082-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12719602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Apr 25;262(12):5755-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3032943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2009 Jun;7(5):442-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19422604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Mar;184:83-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22284713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today. 2009 Jan;14(1-2):16-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18983932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1983 Jan 25;11(2):369-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6298724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2011 May;9(4):419-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21338467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2007 Apr;16(2):239-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17106768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Jun 17;21(12):3070-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12065420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Protein Chem. 1988 Feb;7(1):1-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3076447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Nov 15;14(22):2869-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11090134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;483:193-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19183900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Nov;17(11):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10545920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2009 Jun 15;103(3):562-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19266472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Feb;152(2):622-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2003 Dec;21(12):570-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14624867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:167-194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2006 Oct 20;95(3):424-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16767781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 10;485(7397):160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22575938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2001 Summer;2(2):511-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11749214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2011;12(5):2808-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21686152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;824:469-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22160915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3420-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15542495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Oct;16(10):2561-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Mar 8;227(4691):1229-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17757866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2010 Mar-Apr;28(2):214-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19961918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2007 Jan;5(1):50-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17207256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 2;279(1):534-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2012 Mar-Apr;30(2):434-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21856403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2006 Mar;4(2):243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2009;7:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19664215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2010 Jan;28(1):37-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19897265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2013 Jun;11(5):582-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23398695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3411-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15542493</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Kohalmi, Susanne E" sort="Kohalmi, Susanne E" uniqKey="Kohalmi S" first="Susanne E" last="Kohalmi">Susanne E. Kohalmi</name>
<name sortKey="Menassa, Rima" sort="Menassa, Rima" uniqKey="Menassa R" first="Rima" last="Menassa">Rima Menassa</name>
<name sortKey="Saberianfar, Reza" sort="Saberianfar, Reza" uniqKey="Saberianfar R" first="Reza" last="Saberianfar">Reza Saberianfar</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Gutierrez, Sonia P" sort="Gutierrez, Sonia P" uniqKey="Gutierrez S" first="Sonia P" last="Gutiérrez">Sonia P. Gutiérrez</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000452 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000452 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23663656
   |texte=   Protein body formation in stable transgenic tobacco expressing elastin-like polypeptide and hydrophobin fusion proteins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23663656" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024